Selective Imaging Revisited

Johannes Stüttgen

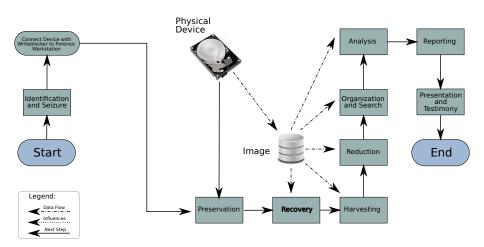
Lehrstuhl für Informatik 1 (IT-Sicherheitsinfrastrukturen) Universität Erlangen-Nürnberg

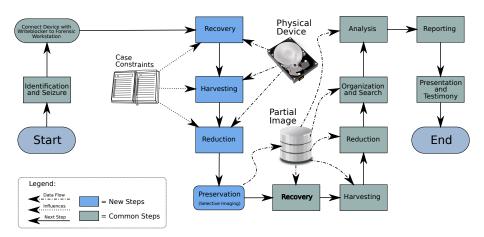
7th International Conference on IT Security Incident Management & IT Forensics

12.03.2013

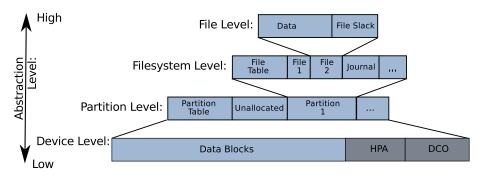
Forensic Evidence Acquisition

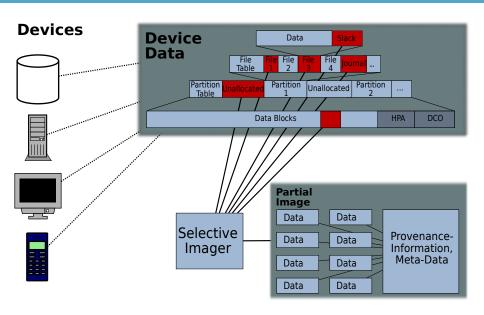
Evidence from hard-disks is usually acquired by creating a sector-wise image:


- Reduces risk of accidentally modifying evidence
- Absolute certainty that all possible pieces of evidence have been acquired


Problems of Sector-Wise Images

- Duration of the process
- Capacity of HDD grows faster than transmission bandwidth
 - Imaging of a HDD with 500 GB capacity with a USB 2.0 Writeblocker (30MB/s) takes about 04:45h
 - Imaging of a HDD with 2 TB capacity using an eSATA Writeblocker (70MB/s) takes about 08:20h
- Data-Protection and privacy concerns don't allow for the acquisition of entire devices in some cases
 - The extend of the acquisition of data should take principle of proportionality into account
 - On a system, used by several people unrelated to a specific case, only the data of the accused is relevant


Investigative Process


Modified Process

Granularity

Acquisition Procedure

Partial Images

Container for (logical) subsets of a data storage device. Has to fulfil these requirements:

- Storage of arbitrary data objects
- Storage of meta-data of all levels of abstraction (partitions, file-system, ...)
- Storage of results from pre-analysis steps
- Verifiability with the original device

Definition

A Partial Image is a set of data objects from a digital device, together with all relevant metadata, where integrity and provenance is verifiable with the original at all times.

Verifiability I

Two important attributes of a forensic Image have to be verifiable:

- Provenance
- Integrity

With a sector-wise image this can be done by comparing hashes. This guarantees:

- All data in the image at a specific address comes from the exact same address on the original device
- Data in the image has not been tampered with (if the original device is still intact)

Partial Image \subset Data on device \Rightarrow Approach is not feasible

Verifiability II

Hashes can still be used for verification of partial images, as long as:

- Verification is performed separately for every data object
- The partial image stores provenance information for each data object ("Provenential Key")

Multiple provenential keys are possible:

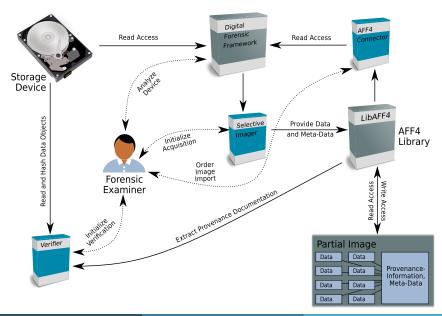
- Sector-Address of all allocated blocks
- Cluster-Address in the file-system (If object is a file)
- Path in the file-system (If object is a file)

Not every key is applicable in every case, a combination of multiple keys is useful

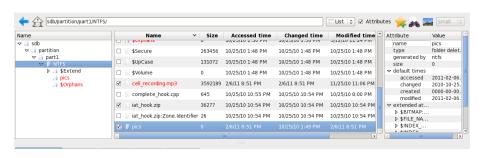
Metrics of Verification

The selective imager stores multiple provenential keys for the verification of data objects in partial images:

- MD5Sum Cryptographic Hash
- Byteruns List of the addresses of each byte on the original device
- Path The Path in the File-System


A combination of the Hash and any of the other keys allows reliable verification

Verification


The process is easily automated and also allows verification of heavily fragmented objects:


```
driest@vogeltop:~/uni/thesis/code 112x22
Verifying 'GermanWordlist.zip':
        Recorded Provenance:
                Byteruns: 'fileoffset/imgoffset/len:0/1183940608/4096 4096/1183944704/4096 8192/1183948800/4096 1
183952896/4096 16384/1183956992/4096 20480/1183961088/4096 24576/1183965184/4096 28672/1183969280/4096 32768/118
6/4096 36864/1183977472/4096 40960/1183981568/4096 45056/1183985664/4096 49152/1183989760/4096 53248/1183993856/
7344/1183997952/4096 61440/1184002048/4096 65536/1184006144/4096 69632/1184010240/4096 73728/1184014336/4096 778
4018432/4096 81920/1184022528/4096 86016/1184026624/4096 90112/1184030720/4096 94208/1184034816/4096 98304/11840
4096 102400/1184043008/4096 106496/1184047104/4096 110592/1184051200/4096 114688/1184055296/4096 118784/11840593
6 122880/1184063488/4096 126976/1184067584/4096 131072/1184071680/4096 135168/1184075776/4096 139264/1184079872/
43360/1184083968/4096 147456/1184088064/4096 151552/1184092160/4096 155648/1184096256/4096 159744/1184100352/409
40/1184104448/4096 167936/1184108544/4096 172032/1184112640/4096 176128/1184116736/1196 '
                MD5: '9f82e852cc53c10138298abf5721a8fe'
                SUCCESS:
                        old hash: '9f82e852cc53c10138298abf5721a8fe'
                        new_hash: '9f82e852cc53c10138298ahf5721a8fe'
SUCCESS
                SUCCESS
                                SUCCESS
The integrity of all listed streams has been verified!
[driest@vogeltop codel$ ./aff4verifv
usage: aff4verify device imagefile [logfile]
[driest@vogeltop code]$
```

Reference Implementation

Acquisition and Import

Efficiency

The procedure has been tested and compared to standard procedure in two very different cases:

- Analysis of a 8GB flash-drive with simple file-system based recovery
- Analysis of a 20GB hard-disc with "complicated" recovery

Results:

- Results of the flash-drive investigation were obtained 28% faster with selective imaging
- For the HDD without file-carving, results were obtained 40% faster
- For image storage, between 94% and 99.6% of space was saved
- File-Carving destroys the entire time advantage, because it requires all data on the device being read

Speed and Wear

- I/O throughput is substantially lower using the selective approach
- Can probably be increased by sequential disk access
- Amount of data transferred is significantly lower
- Disk Wear is significantly lower

Table: Imaging Speed by Tool and Features

Tool	Compress	Hash	Speed
dd			39.00
aimage			35.00
aimage	•	•	13.30
dff (raw)			32.28
dff (aff4)	•		27.03
dff (aff4)	•	•	26.62
dff (sel.)	•	•	15.56

Table: Device wear by investigative procedures.

Procedure	Sectors	Total
Filesystem Analysis	4,528	0.06%
Selective Imaging	119,624	1.53%
Sector-wise Imaging	7,827,392	100.00%
Carving	7,827,392	100.00%

Interviews

We interviewed forensic experts from industry and government agencies:

- Selective Imaging is already being employed on a file-level
- Often with unfit tools (Windows Explorer, Robocopy, ...)
- Even when Examiners use X-Ways or Encase, they fear overlooking evidence in Unallocated-Space or the File-System Slack Space
- Admission in court is not a problem
- In complicated cases the 100% coverage of a sector-wise image is useful
- Future developments will force investigators to sacrifice this coverage for the ability to operate at all...

Summary

- Forensic acquisition process was modified:
 - Preliminary short analysis directly on the device
 - Selection of relevant data
 - Detailed analysis on partial image
- Partial Images are:
 - Sets of data objects
 - Combined with meta-data
 - Verifiable
- Biggest necessity in cases involving:
 - Servers
 - Networks
 - Cases with previously known, strong constraints

Any Questions?